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Topography of the Moon from the Clementine
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Abstract. Range measurements from the lidar instrument carried aboard the Clementine

spacecraft have been used to produce an accurate global topographic model of the Moon. This

paper discusses the function of the lidar; the acquisition, processing, and filtering of observations

to produce a global topographic model; and the determination of parameters that define the

fundamental shape of the Moon. Our topographic model; a 72nd degree and order spherical

harmonic expansion of lunar radii, is designated Goddard Lunar Topography Model 2 (GLTM 2).

This topographic field has an absolute vertical accuracy of approximately 100 m and a spatial

resolution of 2.5 °. The field shows that the Moon can be described as a sphere with maximum

positive and negative deviations of -8 km, both occurring on the farside, in the areas of the

Korolev and South Pole-Aitken (S.P.-Aitken) basins. The amplitude spectrum of the topography

shows more power at longer wavelengths as compared to previous models, owing to more

complete sampling of the surface, particularly the farside. A comparison of elevations derived

from the Clementine lidar to control point elevations from the Apollo laser altimeters indicates

that measured relative topographic heights generally agree to within -200 m over the maria.

While the major axis of the lunar gravity field is aligned in the Earth-Moon direction, the major

axis of topography is displaced from this line by approximately 10 ° to the east and intersects the

farside 24 ° north of the equator. The magnitude of impact basin topography is greater than the

lunar flattening (~2 km) and equatorial ellipticity (-800 m), which imposes a significant challenge

to interpreting the lunar figure. The floors of mare basins are shown to lie close to an

equipotential surface, while the floors of unflooded large basins, except for S.P.-Aitken, Iie above

this equipotential. The radii of basin floors are thus consistent with a hydrostatic mechanism for

the absence of significant farside maria except for S.P.-Aitken, whose depth and lack of mare

require significant internal compositional and/or thermal heterogeneity. A macroscale surface

roughness map shows that roughness at length scales of l0 T-102 km correlates with elevation and

surface age.

Introduction

Topography is one of the principaI measurements required

to quantitatively describe a planetary body. In addition, when

combined with gravity, topography allows the distribution of

subsurface density anomalies to be mapped, albeit

nonuniquely, yielding information on not only the shape, but

also the internal structure of a planet. Such information is

fundamental to understanding planetary thermal history. The

limited coverage and vertical accuracy of previous topographic

measurements have limited the characterization of lunar shape
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and structure, and thus interpretation of the implications for

the thermal evolution of the Moon. Near-global topographic

measurements obtained by the Clementine lidar should enable

progress in all of these areas.

The Clementine Mission, sponsored by the Ballistic

Missile Defense Organization with science activities

supported by NASA, mapped the Moon from February 19

through May 3, 1994 [Nozette et al., 1994]. The spacecraft

payload included a light detection and ranging (lidar)

instrument that was built by Lawrence Livermore National

Laboratory [Nozette et al., 1994]. This instrument was

developed for military ranging applications and was not

designed to track surface topography. However, by careful

programming of instrument parameters, it was possible to

cause the ranging device to function as an altimeter and to

collect near globally distributed profiles of elevation around

the Moon [Zuber et al., 1994]. _ this paper, we discuss the

Clementine lidar investigation, including the function and

performance of the sensor, the collection, processing, and

filtering of data, and the development of global models for the

geodetically referenced long wavelength shape and higher

spatial resolution topography of the Moon. We compare our

results to previous analyses of lunar topography and discuss

the implications of the improved spatial coverage of the

Clementine data as compared to previous data sets.
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Previous Observations

Lunar Topography

Various measurements of lunar elevation have been derived

from Earth-based and orbital observations. Earth-based

measurements of lunar topography have naturally been limited
to the nearside, and include limb profiles [Watts, 1963;

Runcorn and Gray, 1967; Runcorn and Shrubsall, 1968, 1970;

Runcorn and Hofmann, 1972], ground-based photogrammetry

[Baldwin, 1949, 1963; Hopmann, 1967; Arthur and Bates,

1968; Mills and Sudbury, 1968] and radar interferometry [Zisk,
1971, 1972]. These studies yielded information of limited

spatial distribution and positional knowledge of order 500 m.

Orbital data include landmark tracking by the Apollo

command and service modules [Wollenhaupt et al., 1972],

limb profiles from the Zond-6 orbiter [Rodionov et al., 1971],

photogrammetry from the Lunar orbiters [Jones, 1973], and

profiling by the Apollo long wavelength radar sounder

[Phillips et al., 1973a,b; Brown et al., 1974]. With the

exception of the radar sounding data, these observations were

not selenodetically referenced to the Moon's center of mass.

All of the observations were characterized by absolute errors of

the order of 500 m.

More accurate lunar shape information was derived from

orbital laser ranging. The Apollo 15, i6, and 17 missions

carried laser altimeters which provided measurements of the

height of the command modules above the lunar surface [Kaula
et al., 1972, 1973, 1974]. The principal objective of these

instruments was to provide range measurements to scale

images from the Apollo metric cameras [Kaula et al., 1972].
However, accurate orbital range measurements were recognized

to be valuable in their own right, and so the altimeters were

commanded to range even when the images were not being

taken [Kaula et aL, 1972]. These measurements provided the

first information on the shape of the Moon in a center of mass
reference frame.

The Apollo altimeters contained then state-of-the-art ruby

flashlamp lasers, whose lifetimes were usually limited by the

flashlamp, the function of which was to optically excite the

ruby, causing it to lase. However, the very short lifetimes of

the Apollo laser altimeters may more logically be explained

by failure of mechanically spinning mirrors that controlled the

pulsing of the laser. The Apollo altimeters were characterized

by a beamwidth of 300 grad, illuminating an area of the surface

of approximately 300 m in diameter. The vertical accuracy of

the instruments, which was controlled by the system

oscillator, was +2 m. The [aserTiring interval was varied from

16 to 32 s, resulting in an along-track sampling of the range

of the spacecraft to the lunar surface of 30 to 43 km [KauIa et

al., 1972; Sjogren and Wollenhaupt, 1973]. The Apollo 15

laser altimeter gathered data for only 2 112 revolutions

[Roberson and Kaula, 1972; Kaula et al., 1973], while the

Apollo 16 [Wollenhaupt and Sjogren, 1972; Kaula et aI.,

1973] and 17 [Kaula et al., 1974; Wollenhaupt et al., 1974]

altimeters obtained data for 7 1/2 and 12 revolutions,

respectively. A total of 7080 range measurements was

obtained from the three missions, of which 5631 were used in

an earlier study of global lunar topography [Bills and Ferrari,

1977] and 5141 are used in a comparison of Apollo and

Clementine topography in the present study. The absolute

radial accuracy of the Apollo altimetry was approximately 400

m [Kaula et al., 1974], with the greatest uncertainty due to

spacecraft orbit errors largely arising from then current

knowledge of the lunar gravity field. The greatest limitation

of the Apollo altimeter data is its coverage, which is restricted

to +-26 ° of the equator.

Apollo laser altimetry data were used to determine the lunar
mean radius of 1737.7 km as well as the offset of the center of

figure from the center of mass of -2.55 km in the direction of

25°E [Kaula et al., 1974]. Previous to Clementine, the best

spherical harmonic representation of lunar topography was

developed by Bills and Ferrari [1977], and consisted of a 12th

degree and order model that incorporated the Apollo laser

altimeter data, as well as orbital photogrammetry

measurements, landmark measurements, and Earth-based

photogrammetry and limb profile measurements. The

estimated error for these data ranged from 300 to 900 m;

however, vast regions of the lunar farside lacked any

topography measurements.

Lunar Geodetic Positioning

The locations of the lunar retroreflectors deployed by the

Apollo missions and Soviet landers are known to the

centimeter level [Dickey et al., 1994]. However, it is not clear

how these points can be tied into the present lunar control

network [Davies et al., 1987]. Points in the vicinity of the

Apollo Ianders have positional errors of less than 150 m. In

the region covered by the Apollo mapping cameras, positional

errors increase to approximately 300 m. In regions where

telescopic coverage alone is available, positional errors are

generally 2 km or less, while in some regions of the farside,

errors increase to several kilometers. The degree to which

Clementine will ultimately be able to improve geodetic

knowledge of the lunar nearside is controlled mainly by the

accuracy of spacecraft orbits and the adequacy of the attitude

knowledge provided by the spacecraft attitude sensors, both of

which are discussed in this analysis.

Measuring Lunar Topography

The Clementine Lidar

The Clementine lidar is shown in Figure 1, and its

specifications are given in Table 1. This laser transmitter,

which was built by McDonnell-Douglas Space Systems

Division in St. Louis, contained a neodynium-doped yttrium-

aluminum-garnet (Nd:YAG) source that produced lasing at a

wavelength of 1.064 lam. The laser had a pulsewidth of <10

ns, a pulse energy of 171 mJ, and a beam divergence of <500

larad, which resulted in a surface spot size near the minimum

spacecraft orbital altitude (periselene -400 km) of -200 m.

The lidar receiver included an aluminum cassegrain telescope

that was shared with the Clementine high resolution (HIRES)

camera. Incident photons collected by the telescope were

focused onto a silicon avalanche photodiode (SiAPD) focal

plane array.

During its 2 months at the Moon, the Clementine spacecraft

orbited within ranging distance for approximately one-half

hour per 5-hour orbit, and the lidar collected data during most

of this time. During the first month, with spacecraft

periselene at latitude 30°S, topographic profiles were obtained

in the latitude range 79°S to 22°N. In the second month of

mapping, with spacecraft periselene at latitude 30°N, profiles

were obtained in the latitude range 20°S to 81°N. The along-
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Figure 1. The Clementine ranging lidar, consisting of a 0.131 m diameter Cassegrain telescope (right), a

1.064-1im Nd:YAG laser transmitter (left), and receiver electronics (not shown). The instrument was designed
and built at Lawrence Livermore National Laboratory, Livermore, California, except for the laser transmitter,

which was built by McDonnell-Douglas Space Systems Division, St. Louis, Missouri.

track shot spacing assuming a 100% laser ranging probability

is -20 km, and this resolution was achieved over some smooth

mare surfaces. However, as detailed later, in rough highland

terrains where the instrument did not maintain "lock" with the

surface, the spacing was more typically of the order of 100 kin.

The across-track resolution was governed by mission duration,

Table 1. Clementine Ranging Lidar Instrument Parameters

Parameter Value Unit

Laser

Type Nd:YAG
Wavelength 1.064 mm
Energy 171 mJ
Pulse width 10(?) ns

Beam divergence 500 mrad
Nominal pulse repetition rate 0.6 Hz

Detector

Type SiAPD
Field of view 0.057 degrees

Bandpass filter 0.4 to 1.1 mrad
Telescope

Type Cassegrain
Diameter 0.131 m
Focal length 0.125 m

Receiver electronics
Clock counter 14 bits

Frequency response 15.0001 MHz
Return range bin 39.972 m

Maximum range 640 km
Gain 100x

Other

Spot size at periselene -200 m
Assumed lunar aIbedo 0.15 to0.5

Minimum along-track 20 km
shot spacing

Instrument
Mass 2.370 kg
Power 6.8 at 1 Hz W

i.e., the spacing of orbital tracks, and is approximately 60 km

at the equator and less elsewhere.

Geodetic Conventions

The Clementine spacecraft and instruments utilized two

coordinate systems: (1) a spacecraft-fixed XYZ coordinate

system along whose axes the spacecraft inertial measurement

units (IMU) were aligned to measure the spacecraft attitude and

thus the inertial pointing of the science instruments; and (2) a

science instrument-fixed xyz coordinate system used to define

the mounting of each instrument with respect to the spacecraft-

fixed XYZ system, instrument pointing, and the observation

geometry within each instrument. The Earth Mean Equator and

Vernal Equinox 2000 (i.e., J2000) was used as the standard

inertial reference system to describe the Clementine spacecraft

trajectory, planetary body ephemerides, star positions,

inertial orientations of planetary body-fixed coordinate

systems, inertial spacecraft attitude, and inertial instrument

pointing. A series of matrix transformations was used to relate

the instrument-fixed coordinates to the inertial J2000

coordinates [D,trbury et al., 1994]. All calculations for

topography were done in a mass-centered, selenocentric

coordinate reference system, with longitude defined as positive

eastward with the prime meridian defined as the mean sub-Earth

longitude [Davies et aL, 1987].

Orbit and Range Determination

In order to determine a global topographic data set from the

Clementine lidar system it was necessary to compute precise

spacecraft orbits, which were subtracted from the range

profiles to yield relative surface elevations. We computed

these orbits [Lemoine et al., 1995] with the Goddard Space

Flight Center's GEODYN/SOLVE orbital analysis programs

[Putney, 1977; McCarthy et al., 1994], which are batch

processing programs that numerically integrate the spacecraft



1594 SMITHETAL.:CLEMENTINELUNAR TOPOGRAPHY

Cartesian state and force model partial derivatives by utilizing

a high-order predictor-corrector model. The force model for

this study included spherical harmonic representations of the

lunar and terrestrial gravity fields (a low-degree and -order

model, only, for the latter), as well as point mass

representations for the Sun and other planets. Estimates for

solar radiation pressure, tidal parameters, planetary rotation,

measurement and timing biases, and tracking station

coordinates were obtained along with the orbits. Spacecraft jet

firings to relieve attitude disturbance torques (aka momentUm

dumps) were accounted for by explicitly estimating them in the

orbit determination process or by breaking orbital arcs at the

times of the maneuvers.

To determine the range of the spacecraft to the lunar surface,

we interpolated the spacecraft orbital trajectory to the time of

the laser measurement, and corrected for the one-way light time

to the surface. We then transformed the measured range from

the spacecraft to the surface to a lunar radius in a center of mass

reference frame. Our orbits were characterized by a

repeatability in radial position of about 10 m and have a radial

accuracy with respect to the lunar center of mass of

approximately 70 m [Lemoine et al., 1995].

Sources of Radial Error

In Table 2 we list estimates of the sources of radial error for

the Clementine lidar system. Principal error sources include

orbit, which we estimate at 3 times the radial position

repeatability of 10 m, and the system error of the instrument,

which comes from the least significant bit in the system

oscillator (40 m). Errors in knowledge of the lunar geoid,

which affect referencing of the topographic model, are

estimated to be of the order of 10 m. The pointing errors from

the spacecraft around the Moon were generally at the

miiliradian level [Regeon et at., 1994], which after correction

using the spacecraft quaternions translated to, at most, meter-

scale errors. (However, during several passes, the spacecraft

was intentionally pointed off-nadir for imaging of specific

targets. The lidar successfully ranged at angles of up to 6° off-

nadir, though in general, off-nadir angles of greater than 4 °

yielded ranges with unacceptably large errors and were

discarded.) The roughness of the lunar surface is another

significant error source. A roughness corresponding to a

footprint-scale surface slope of 5 °, typical of rough highland

terrains, gives an error of 17 m. Postprocessing revealed jitter

equivalent to approximately one range bin (-40 m) in the data.

Range walk, the error in knowlege of the centroid of the return

pulse that arises due to pulse spreading, may produce an error

of as much as 70 m.

Since the error sources are statistically independent, we may

estimate the total error from the root sum square of the

contribution, and doing so yields a total radial error of

approximately 100 m. A 30% contingency to account for

additional unmodeled or mismodeled error sources yields a

radial error of 130 m.

The Laser Ranging Process

The lidar measured the slant range of the spacecraft to the

lunar surface at spacecraft altitudes of 640 km or less [Nozette

et al., 1994]. The range was determined by the number of

clock cycles between the laser start pulse and returned signal.

The analog/digital (A/D) resolution of the lidar clock was

limited by a 14-bit chip, which was used owing to its

availability on the accelerated development schedule of the

Clementine Project. Owing to the limitations of this chip, it

was necessary to bin four returns to each clock count, which

produced a single shot range resolution of 39.972 m.

After each laser shot, the lidar electronics triggered

continuously on the arrival of photon pulses above a voltage

threshold while the range counter incremented. Noise from the

SiAPD detector or solar background radiation at the laser

wavelength would often trigger the electronics before any

photons from the laser shot would arrive. After detecting the

reflected pulse, further noise triggers persisted. In order to

record only "reasonable" lunar range counts, a range window,

defined as a period of time during which a returned laser pulse

was expected, was programmed to maximize the probability of

valid returns via uploaded commanding. Illustrated in Figure 2,

the window setting was determined from orbital predictions,

surface albedo (mare versus highland), Sun angle, and

instrument gain; the settings were modified several times

during each orbital pass by the instrument engineers and

science team. The counts associated with the last trigger

before the window; the first, second, third, and last trigger

within the window; and the first trigger after the window were

Table 2. Sources of Radial Error in GLTM 2

Error Source Approximate

Magnitude, m

Comment

Lidar instrument 40
Orbit repeatability (radial) 30
Geoid 10
Sl_acecraft pointing 10

Range iitter 40
Footprint-scale surface 17

roughness
Range walk 70
RSS* 97

Contingency 30
RSS including 127

contingency

measured; instrument performance
calculated; 3x formal error
calculated

estimated; assumes 10x poorer performance
than nominally observed

observed
calculated; assumes 5 ° variation over

footprint
estimated; assumes 45 ° slope

*RSS, root sum square.
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Figure 2, Clementine lidar range counter latches. The

receiver electronics was designed such that a single transmitted

laser pulse could report up to four measurements of range,

corresponding to the first three and last "hits" within the range
window. A range was reported when the number of photons

incident on the instrument detector exceeded the user-defined

detection threshold. "False triggers" were due to noise from

the system electronics and solar background radiation at the

laser wavelength that was received directly or reflected from
the Moon. The range window position and width and the

threshold settings were uploaded via ground commanding and

were modified several times during each orbital pass.

latched into registers 0-5. If fewer than four triggers occurred

within the range window, the last count within the gate was

identical to the previous trigger. Initial results suggested that

later returns were increasingly likely to be due to noise, but

depending on how soon the range window opened, any of the

early returns could also be due to noise. The procedure that we

implemented to distinguish between multiple triggers for a

given transmitted pulse is discussed below.

Laser ranging was performed on orbital passes 8 to 163 in

the southern hemisphere and passes 165 to 332 in the north.

Figure 3 compares the topographic coverage obtained by

Clementine compared to that by the Apollo 15, 16, and 17

laser altimeters. Passes 8 through 19 were calibration passes,

and the data were discarded due to poor quality. During the

course of the mapping mission the lidar triggered on about

i23,000 shots, corresponding to 19% of the transmitted laser

pulses. Much of the time, the first trigger in the range window

was a true echo, but often, particularly over rough terrain, there

were multiple ("false") triggers due to noise that did not

correlate with lunar features. The main sources of noise were

the clock jitter, roughly normally distributed with -40 m

sigma; side-lobe artifacts from the laser transmitter, which are

terrain-dependent and not well understood; detector noise,

which is dependent on ambient conditions (especially

temperature variations on the SiAPD detector), range and

threshold settings, and link margin; and solar background

radiation at the laser wavelength, imparted directly on to the

detector and reflected from the lunar surface. In order to

develop a digital topographic model of the Moon, it was

necessary to develop a filter that, when applied to the data,

returned at most a single valid range value for each bounce

point. Since the detailed topography was largely unknown, it

was necessary for this filter to be based on a priori knowledge

of lunar surface properties. In the following section we

describe a stochastic model for topography, its associated

parameters, and a procedure that implemented this model as a
filter.

Processing Lunar Topography

Stochastic Description of Topography

One-dimensional (l-D)topographic profiles often obey a

power law [Bell, 1975] for spectral power P, as a function of

wave number k=-l/L_ of the form

P(k) = ak-b (I)

where constants a and b are the intercept and slope on a log-

log plot. Topographic spectra are invariably "red," that is,

fall off at high wave numbers, with b ranging from I to 3

[Sayles and Thomas, 1978; Huang and Turcotte, 1989]. The

same relation applies to two-dimensional (2-D) spectra, as a

function of wave number magnitude Ikl, with b from 2 to 4

[Goff, 1990]. Planets obey a similar expression for spherical

harmonic gravity coefficients known as Kaula's rule [Kaula,

1966]. For planetary surfaces the value of b for coefficient

variances is asymptotically equal to 3 [Bills and Kobrick,

1985].

A related local scaling property of surfaces described by a

function z(x) is that they are statistically self-affine

[Mandelbrot, 1982; Goff, 1990; MaIiverno, 1991]. This

means that for any constant a > 0, there is a neighborhood

lul< of any given point x where the probability

distribution of differences z(x+au)-z(x) is the same as that

of [z(x+u)-z(x)] times a scale factor a n, where H is the

Hurst exponent [Hurst, 1951]. Viewing a small piece of terrain

at greater horizontal and vertical magnification does not

change its essential appearance. The self-affine property

implies a fractal dimension D = 3 - H, and for most power law

surfaces, D= 4-bl2 [Goff, 1990]. Planetary surfaces have

a
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Figure 3. (a) Locations of laser topographic measurements
from the Apollo 15, 16, and 17 laser altimeters. Co) Locations

of laser topographic measurements from the Clementine Lidar.
The points shown are those remaining after filtering to remove

spurious noise hits.
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beendescribedin termsof afractionalBrownianmodel,for
whichH ranges from 0.5 tO 0.95 [Mandelbrot, 1975, 1982].

In such models, repeated random displacements generate a self-

affine, fractal surface. Thus the mesoscale lunar highland

surface, being saturated by uncorrelated impact processes of

random size and distribution, is roughly self-affine.

At intermediate scales on the Earth, the spectral amplitudes

of long-wavelength topography are attenuated by viscous

relaxation and are smaller than predicted by a single power law

[Fox and Hayes, 1985; Gilbert and Maliverno, 1988; Goff and

Jordan, 1988]. Below some corner wave number k O, the

reciprocal of wavelength, spectral power flattens, and the

topographic variance is bounded by the square of a

characteristic height h. Such characteristic height and width

scales have been incorporated into a 2-D stochastic model for

seafloor topography [Goff and Jordan, 1988, 1989a,b], via a

stationary, random function, which is completely specified by

its covariance. The covariance, assuming a zero mean, is the

second-order moment of a topographic function z(x) :

c(u) = (z(x + u)z(x)), (2)

with the brackets indicating an average over points where the

product is defined. Goff and Jordan [1988] parameterize the

covariance in the isotropic case, for r = k 0 Iu h as

c(u) = h2Gv(r) l Gv(O), (3)

where Gv(r)=rVKv(r) and K v is the modified Bessel

function of the second kind, of Order v. For v=0.5 the

covariance takes the simple form c (u) = expf-r). The

eovariance model parameter v, which describes the scaling

behavior of topography at shorter length scales, determines

the fractal dimension D=3-v [Goffand Jordan, 1988] and

the falloff of the 2-D power spectrum,

P(k) = 4nvh2ko_[lk]2 + II-(v+_>, (4)

from which it is clear that for, large wave numbers the spectral
power falls off as Ik1-2(v+_).

Given a covariance function describing the correlation

properties of the topography, and given a set of observations

zlxi) with associated standard deviations o-i, an interpolation
scheme [Tarantola and Valette, 1982] allows us to predict the

elevation at an arbitrary point x, together with confidence

limits. This procedure, also known as kriging [Matherton,

1965], generalizes the steady state Kalman filter [Kalman,

1960].

For zero-mean topographic functions, the estimate_, is

given by

Z -Iz(xj),
i j

where S 0. = c(xix -xj_+Sijaio-j.. The variance of each estimate
is given by

 2(xl=c(0 -Z Zc(x,-xlsi,-,c(x,-x)
i j

The linear system is solved by an incrementally updated

Cholesky factorization for symmetric, positive-definite

matrices [Press et al., 1986].

The interpolant _(x) is a least squares, unbiased estimate of

the elevation at any particular point, given the observations

and an a priori topographic distribution with zero mean and

covariance c(u). In order to apply it as a filter, we evaluate

the observations in sequence. An elevation z is accepted if it

lies within a confidence interval of _.(x). It is incorporated

into the topographic model, and the next interpolant is

calculated, together with its confidence interval. Such a filter

tracks the lunar surface while rejecting most of the noise.

Initial experience with multiring basins such as Orientale

found that the filter would track up to the edge of the crater rim

but would "lose lock" as the topography dropped off abruptly

and exceeded the confidence limits. A few of the noise returns

would be accepted and some of the valid hits rejected, until the

confidence limits increased and the filter found the crater floor.

Filtering in the reverse direction from the spacecraft pass

would track the floor and then miss the abrupt rise. Thus

forward and backward filtering is required.

The modified filtering algorithm proceeds as follows: each

orbital pass for which range data exist is filtered in sequence.

Elevations with respect to the dynamical ellipsoid are tested

with respect to the stochastic model to see whether they lie

within the confidence limits. If so, the elevation is flagged as

acceptable, and the model is updated. Thus, at this stage, more

than one range count may be included for each shot. Next, the

pass is filtered in reverse order, and acceptable ranges are

flagged. The union of the forward and backward pass provides

a list of ranges for this pass that make the "first cut."

The first cut incorporates a considerable amount of noise

and often deviates substantially from the "true" surface returns.

The confidence limits of the model are based on the number of

"valid" observations in the vicinity of the interpolant and are

thus narrower than in the forward or backward passes. The next

cut is formed by augmenting the confidence limits with an

added initial tolerance of 2 km. To eliminate noise while

maintaining "lock" on the planetary surface, the model is

iteratively refined by successive reduction of the added

tolerance by one half. The resulting models reject a greater

proportion of noise returns. When no further returns are

rejected, the results from the current orbital pass are added to

the filtered data set, and we proceed to the next pass.

The filtered data set grows with each succeeding pass, until

nearly all of the southern hemisphere is filtered. The second

month's mapping of the northern hemisphere overlaps in the

region from 15°S to 15°N latitude, so that the constraints from

the first month provide added stability to the filier near the

equator. The computational burden of equations (5) and _6)

grows as the cube of the number of observations, so it became

necessary to limit the model for each orbital pass to passes

within 5.6 ° of longitude. This was sufficient to include at least

two of the adjacent orbits east or west of the pass, more in the

region of overlap near the equator.

Given prior data, we adopted the values h = 8 km and found

that a correlation distance of 170 km, about 5.6 ° of latitude,

gave good results. Initial experience with orbital passes over

Orientale Basin provided estimates of the standard deviations

of first through fourth returns of 2, 5, 8, and 15 km,

respectively. These standard deviations are representative of

the unfiltered data set as a whole. Without any false returns,

electronic jitter and quantization are responsible for an

uncorrelated noise whose standard deviation is about 40 m,

while radial orbital uncertainty is of the order of 100 m
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[Lemoine et aL, 1995]. Filtering the data yielded 72,548 valid
ranges that were used to generate a global lunar topographic

grid and spherical harmonic model. After filtering, a few dozen
ranges corresponding to known impact features were manually
included, and a small number of suspect ranges were excluded.
Figure 4 shows an example of a filtered pass over Mare
Orientale and the Mendel-Rydberg Basin.

Assessment of the Stochastic Topographic Model

A convenient way to represent the covariance of surfaces is

the incremental variance y(u)= l((Az)2)[Matherton, 1965;

Davis, 1973], the variance of differences Az = z(x + u)- z(x).
For stationary, random, zero-mean functions, gamma is related
to the covariance by

7(u) = c(0)- c(u). (7)

The incremental deviation d(u)= _f-y(u) expresses the average
local slope of the surface and asymptotically reaches the
characteristic height or roughness. Figure 5 shows lunar

Figure 5. Lunar incremental deviation with offset for
northern hemisphere mare and highland regions. The mare
regions are extraordinarily smooth, while farside highland
regions are much rougher and have a shorter characteristic
correlation length. The figure plots both the sum-of-squares
(L2) standard deviation and the more robust L1 deviation
[Neumann and Forsyth, 1995] and parameterized fits. For
distances of less than 100 km the deviations increase nearly
linearly, especially when robust estimates are used. The
deviations justify our application of a self-similar model over
a few degrees of scale.
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Figure 6, Macroscale surface roughness of the Moon in 30°x25 ° squares. (a) Characteristic height (h) in

kilometers. (b) Characteristic length (1/k o) in kilometers. Both maps are characterized by 15 ° by 25 ° regions

from 75°S to 75°N based on a grid of observations based on a resolution of 1/20 °. Roughness was determined

by fitting the local along-track and across-track slopes to the covariance model used in the altimetry filtering
scheme.

incremenlal deviation with offset for northern hemisphere

mare and highland regions. The mare regions are

extraordinarily smooth in topography despite large gravity

anomalies [Zuber et al., 1994]. The farside highland regions

are much rougher and have a shorter characteristic correlation

length.

Populations of differences _z are generally long-tailed and

contain outliers. We show both the sum-of-squares (L2)

standard deviation, and the more robust L 1 deviation [Neumann

and Forsyth, 1995] and parameterized fits, For distances of

less than 100 km, especially when robust estimates are used,

the deviations increase nearly linearly. While other stochastic

models may provide a better fit to the large-scale topography,

Figure 5 justifies our use of a self-similar model over a few

degrees of scale.

The stochastic parameters that best fit the topography vary

markedly over the lunar surface. Figure 6 shows h and k 0 for

I5 ° by 25" regions from 75°S to 75°N based on a grid of
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Table 3. Spherical Harmonic Normalization Factors

Degree Order Factor

0 0 I
I 0 4(3)
1 1 "_(3)
2 0 "/(5)
2 1 "/(5/3)
2 2 (1/2)`/(513)
3 0 "/(7)
3 1 4(7/6)
3 2 (1/2)4(7/15)
3 3 (1/6)"/(7/10)
4 0 "/(9)
4 I _(9/10)

Factor(/,m) = _[(l-m)!(21+l)(2-5)/(l+m)!], where _5= 1

for m = 0, 8 = 0 for m _:0. From Kaula [1966].

observations based on a resolution of 1120 °. These maps will

later be interpreted in terms of macroscale roughness of the

lunar surface at length scales of 101-102 km.

Spherical Harmonic Model

The filtered data were assembled into a 0.25°x0.25 ° grid,

corresponding to the minimum spacing between orbital

passes. Figure 3b shows that most major lunar basins were

sampled by Clementine altimetry. The lidar did not return

much ranging information poleward of +78 °. Consequently,

before performing a spherical harmonic expansion of the data

set, it was necessary to interpolate over the polar regions,

corresponding to ~2% of the planet's surface area. For this

purpose, we used the method of splines with tension [Smith

and Wessel, 1990] to continue the data smoothly across the

poles. We performed a spherical harmonic expansion of the

mass=centered radii and the interpolated polar regions to yield

a global model of topography H of the form

H(A,#) = __-film(sintp)('Ctrn sin mA) (8)

L/=1 m=0

where _? and 3. are the selenocentric latitude and longitude of

the surface, Plm are the normalized associated Le_gendre

functions of degree l and azimuthal order m, Clm and Sire are

the normalized spherical harmonic coefficients with units

given in meters, and N is the maximum degree representing the

size (or resolution) of the field. Here the C and S coefficients

provide information on the distribution of global topography.

We have designated our spherical harmonic expansion of

topography, performed to degree and order 72, Goddard Lunar

Topography Model 2 (GLTM 2). The model, shown in Plate 1,

has a full wavelength spatial resolution of ~300 km. The

reliable global characterization of surface heights for the

Moon. Comparison of the data content and size of the model

to the pre-Clementine solution of Bills and Ferrari [1977] is

presented in Table 5. To first order, the shape of the Moon can

be described as a sphere with maximum positive and negative

deviations of ~8 km, both occurring on the farside (240°E,

10°S; 160°E, 75°S) in the areas of the Korolev and South Pole-

Aitken (S.P.-Aitken) basins, respectively. Departures from

sphericity are the result of the processes that shaped the Moon

(e.g., impact, volcanism, rotation, tides)early in its history

[Zuber et al., 1996]. As detailed in the next section, the

largest global-scale features are the center-of-mass/center-of-

figure (COM/COF) offset and the polar flattening, both of

which are of the order of 2 km, and the equatorial ellipticity,

which is slightly less than 1 km. However, there are

significant shorter wavelength deviations, due primarily to

impact basins, that are much larger.

Figure 7 plots the square root of the sum of the squares of

the spherical harmonic C and S coefficients for a given degree l

(8), i.e., the power per degree. This amplitude spectrum of the

topographic model has more power at longer wavelengths than

previous models owing mostly to more complete sampling of

the surface, particularly the lunar farside. The figure

demonstrates that the power of topography follows a simple

general relationship of 2 km/sphericaI harmonic degree.

Another fundamental characteristic of the lunar shape is that

the topographic signatures of the nearside and farside are very

different. As shown in Figure 8, the nearside has a gentle

topography with an rms deviation of only about 1.4 km with

respect to the best fit sphere compared to the farside, for which

the deviation is twice as large. The shapes of the histograms

of the deviations from the sphere show a peaked distribution

slightly skewed toward lower values for the nearside, while the

farside is broader but clearly shows S.P.-Aitken as an anomaly

compared to the rest of the hemisphere. The sharpness of the

nearside histogram is a result of the maria, which define an

equipotential surface (cf. Figure 15).

We have performed a comparison of elevations derived from

the Clementine lidar to control point elevations from the

Apollo laser altimeters [Davies et al., 1987]. A summary of

the Clementine and Apollo data sets is presented in Table 6.

Figure 9 indicates that where Apollo and Clementine coverage

overlaps, measured relative topographic heights generally

agree to within -200 m, with most of the difference due to our

more accurate orbit corrections [Lemoine et al., 1995] and to

variations in large-scale surface roughness (Figure 6). In

contrast, Clementine topography often differs from landmark

elevations on the lunar limb [Head et al., 1981] by as much as

several kilometers.

Differences in lunar shape parameters derived from a

comparison of Clementine and Apollo are mostly due to

Apollo's coverage being limited to north and south latitudes

26 ° and below. The greatest differences are on the farside over

spherical horrnonic solution is normalized in the manner of a broad latitude band, much of which was not properly sampled

Kaula [1966]; normalization factors are given in Table 3.

Spherical harmonic coefficients for the first 16 degrees and
orders are included in Table 4.

Topography of the Moon

Global Attributes

GLTM 2 represents a refinement of our earlier solution

GLTM 1 [Zuber et al., 1994], which represented the first

by the Apollo laser instruments.

Fundamental Parameters of the Shape

The CIementine altimetry data have made possible

improved estimates of the fundamental parameters of the

Moon's shape, which are principally derived from the long-

wavelength field. To isolate the relevant parameters, we

performed several least squares spherical harmonic expansions

of the Clementine gridded altimetric radii sampled at a
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Table 4. Normalized Coefficients of the 16 x 16 Lunar Shape Model

Degree Order

Coefficient Coefficient Coefficient

_ _ Degree Order _ _" Degree Order _

0 0 1,737,094
1 0 162

I 1 -1007 -424

2 0 -733

2 I -777 1

2 2 72 395

3 0 99
3 1 559 66

3 2 456 158
3 3 433 -10

4 0 202

4 I -199 -54

4 2 -311 -88

4 3 -213 -274

4 4 -220 I10

5 0 -84

5 I 22 -22

5 2 160 140

5 3 5 200

5 4 48 11

5 5 125 -73

6 0 -4

6 1 100 -134

6 2 -13 -98

6 3 -39 -67
6 4 -87 -127

6 5 -51 -154

6 6 29 112

7 0 107

7 I 161 30

7 2 80 14
7 3 -22 108

7 4 -19 49
7 5 -25 103

7 6 -107 42

7 7 1 -29

8 0 77
8 1 -121 35

8 2 -23 54

8 3 4 55

8 4 147 -38

8 5 44 58

8 6 1 -35

8 7 42 -1

8 8 -25 80

9 0 -7

9 I 79 18
9 2 2 -29

9 3 4 -I

9 4 -93 -57

9 5 -56 -113

9 6 29 -27 13 II -I 9

9 7 -38 -39 13 12 -22 20

9 8 76 -124 13 13 -6 -73

9 9 34 26 14 0 46

10 0 -49 14 I -42 4

10 I 21 13 14 2 15 16

10 2 -21 13 14 3 60 20

10 3 6 -57 14 4 24 9

10 4 -27 66 14 5 11 33

10 5 -12 60 14 6 25 -6

10 6 -17 45 14 7 26 36

10 7 37 55 14 8 5 61

10 8 40 21 14 9 -26 -26

I0 9 69 !6 14 10 -4 4

I0 I0 86 13 14 II -10 15
0 23 14 12 -15 -37

1 -6 -2 14 13 -28 -30

2 I 42 14 14 6 -34

3 -14 106 15 0 0

4 0 -22 15 I -28 -23

5 46 16 15 2 -11 20

6 -t6 -18 15 3 -36 -28

7 38 14 15 4 16 -12

8 0 12 15 5 -29 19

9 26 9 15 6 53 -28

10 -7 8 15 7 31 30

I1 -9 57 15 8 52 -1

12 0 -33 15 9 -9 20

12 1 -10 9 15 10 -4 18

12 2 24 0 15 11 40 -29

12 3 -25 -55 15 12 -28 -18

12 4 -37 3 15 13 58 40

12 5 -1 -36 15 14 -25 74

12 6 0 4 15 15 49 -7

12 7 II 60 16 0 6

I2 8 -9 -8 16 1 -23 -I1
12 9 -15 79 16 2 33 6

12 10 -46 -17 16 3 -7 -26

12 11 85 71 16 4 31 36

12 12 -94 81 16 5 16 35

13 0 -15 16 6 9 31

13 1 41 -43 16 7 6 -6

13 2 -76 -49 16 8 -33 -23

13 3 6 -33 16 9 -17 -75

13 4 -27 -5 16 I0 17 2

13 5 10 -69 16 11 -17 -9

13 6 -6 -4 16 12 -16 29

13 7 8 -66 16 13 -10 0

13 8 -20 -7 16 14 17 -44

13 9 -27 -46 16 15 30 13

13 I0 19 -9 16 16 -16 -28

Values are in units of meters.

1601

resolution of 2°x2 ° and examined the stability of solutions

over a range of low degrees and orders.

Mean, equatorial, and polar radii. Figure 10 shows

solutions for mean, equatorial, and polar radii. Based on the

average of nine low-degree solutions, we define the mean

radius of the Moon to be 1,737,103 + 15 m. Table 7 lists

values of the mean, equatorial, and polar radii for a range of

low-degree spherical harmonic models. The small variation in

the solutions for different degrees and orders suggests to us

that these parameters are reasonably well determined from the

Clementine data. However, the variations in the values across

the different solutions have probably not captured any

systematic error common to all the solutions. Based upon a

ranging system that has an intrinsic accuracy of 44 m, we feel

that some scaling of the errors of the lunar radii is required and

that a 50% increase above the standard error to 15 m, 65 m, and

200 m for the mean, equatorial, and polar radii, respectively, is

probably reasonable.

While Table 7 suggests that the mean equatorial radius is

well determined, it should be interpreted with caution, as the

lunar equator deviates significantly from circularity (cf. Figure

13). The greater scatter in the polar radius solutions arises

mostly because of the interpolation over the polar gaps. For

this reason, we feel the results from the low-degree solutions

(< 6) are better because they are less sensitive to the gaps.

Note that even with the attendant uncertainty in the solution
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Table 5. Comparison of Global Lunar Topography Models

Parameters Bills and Ferrari [1977] GLTM 2 (This Study)

Number of observations 5631 Apollo laser 72,548 Clementine lidar
12,342 orbital photo
31 landmark tracking

33! 1 limb profiles
21,999
5°, ~150 km
12x12; 1820 km
-500 m (nearside only)
-lkm

Total observations 72,548
Spatial gridding 2°, -60 km
Spherical harmonic degree 72x72; 340 km
Regional accuracy -40 m
Accuracy with respect to COM ~100 m

that the polar radii are considerably smaller than the equatorial

radii and strongly suggest an apparent flattening of about 2

km. We return to this point later.

Low-degree and -order spherical harmonic

coefficients. Table 8 summarizes solutions for low-degree

and -order spherical harmonic coefficients for a range of

topography solutions. The stability of these solutions

illustrates ctearly that the low-degree and -order shape is well

determined from Clementine altimetry.

Center-of.mass/center-of-figure offset. Figure l 1

shows solutions for the COM/COF offset. Our analysis shows

this Offset to be (-1.74, -0.75, 0.27) km in the x, y, and z

directions, respectively. It has long been known that the

Moon's geometric center was displaced from its center of mass

[Kaula et al., 1974; Sjogren and Wollenhaupt, 1976], but as a

result of the Clementine altimetry measurements, we know this

displacement deviates from the Earth-Moon line. On the

farside of the Moon the .COM/COF offset is displaced

approximately 25 ° toward the western limb ..and slightly north

of the equator [Zuber et al., 1994], in the gener_al direction of

the highlands north of S.P.-Aitken (cf. Plate 1). This

displacement, illustrated by a plot of the variation of

topography with longitude in Figure 12, is not surprising

when viewed in the context of the overall shape of the Moon

but is particularly interesting when compared, to the lunar

gravity field, which shows no such offset from the Earth-Moon

line [Lemoine et aI., 1996] (F.G. Lemoine et al., A 70th degree

and order lunar gravity model from Clementine and historical

data, submitted to Journal of Geophysical Research, 1996;

1000

i
100
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0 10 20 30 40 50 60 70 80

Harmonic Degree, N

Figure 7. Lunar topographic amplitude spectrum based on
Clementine altimetry. Note that the power of topography

follows a general relationship of 2 km per spherical harmonic

degree N.

hereinafter referred to as submitted paper). Long-wavelength

displacements that result from the irregular shape of the Moon

are thus isostatically compensated, perhaps largely by

variations in crustal thickness [Zuber et al., 1994]. Other

density variations within the interior are likely insufficient to

accomplish compensation [Neumann et al., 1996; Solomon

and Simons, 1996], though probably contribute significantly

[Solomon, 1978; Thurber and Solomon, 1978; Wieczorek and

Phillips, 1996].

Equatorial ellipticity. Another notable characteristic

of the Moon is the lack of any significant ellipticity in the

equatorial plane. Figure 13 shows the elevation with respect

to a sphere, i.e., deviations from a spheroid for all data within

1° of the equator, along with low-degree and -order spherical

harmonic terms evaluated at the equator. The (2,2) terms in the

spherical harmonic model indicate an amplitude in the

equatorial plane of about 800 m with a maximum ~40°E

longitude, smaller than the COM/COF offset, but aligned in

5
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Figure 8. Histograms of ellipsoidal heights of all lunar

topography (solid black line), nearside topography (grey solid
line), and farside topography (black dotted line).
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Table6. ComparisonofClementineApolloLaserandClementine
LidarProfileDataSets

Parameters Apollo Clementine

Numberofobservations 7080 72,548
Coverage 26S° to 26N ° 79S ° to 81N °
Alon,_-track resolution 30-43 km >_20km
Across-track resolution NA -60 km

Single shot vertical resolution 2 m 39.972 m

NA, not available•
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the same general direction. Figure 13 also illustrates that the

(1,1) terms are more than a factor of 2 larger than the (2,2)

terms and indicates that the largest topographic effect around

the lunar equator is the COM/COF offset. Further, the major

axis of the equatorial ellipticity (2,2 terms) is offset from the

Earth-Moon line by about 45" (E) and the (1,1) terms are also

offset about 30" (E) and presumably trying to satisfy the fact

that the maximum elevation of the highlands is not at

longitude 180°E but rather 210°E. While the major axis of the

lunar shape does not directly align toward Earth, the minimum

moment of the lunar mass does [Ferrari et al., 1980; Dickey et

al., 1994].

Triaxial ellipsoid. Because the major axis of lunar

topography is not in the Earth-Moon line, we have produced

two solutions for the best fit triaxial ellipsoid, which are

shown in Table 9. In the first (rotated) solution, we fit the

ellipsoid without constraining the direction of any of the axes.

This solution best fits all data in a least squares sense and has a

major axis that is aligned in the general direction of the

highest farside topography and with the polar axis tilted

toward Ea.rth and passing through latitude 66.0°N, longitude
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Figure 9. Comparison of elevations from the Clementine

and Apollo laser instruments for 5141 points. Deviations

from perfect correlation include more accurate orbits

determined from Clementine tracking and macroscale

roughness of the Moon.

10.4°E. In the second (nonrotated) solution, all axes are fixed,

with the A axis along 0 ° longitude, and A and B in the

equatorial plane. This solution does not fit the Clementine

radii as well as the rotated solution and reduces the size of the

longest (A) equatorial axis, probably because the axis will be

closer to the S.P.-Aitken basin (cf. Plate 1) while increasing

the polar axis (C). Nevertheless, this model suggests a larger

equatorial mean radius than polar radius by nearly 2.5 km.

Flattening. The radii measurements have an rms

deviation about the best fit (displaced) sphere of 2.1 km with a

full dynamic range of nearly 16 km. The radius measurements

within +1 ° of the equator suggest that the mean equatorial

radius is approximately 1.2 _+ 0.2 km larger than the mean
radius, while the two polar radii are about 0.8 _+ 0.5 km less

than the mean. This leads to an apparent flattening of 2.0 +
0.5 km. The large uncertainty arises because the altimetry data

do not extend beyond approximately latitudes 81°N and 79°S

and extrapolation to the poles is necessary. Further, the local

topography in the polar regions is large compared to the

flattening and is inseparable from it. Another more definit!ve
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Figure 10. Low-degree and -order spherical harmonic
solutions for the Moon's mean, equatorial, and polar radii.

The stability of the solutions provides an indication of the

confidence of the estimates.
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Table 7. Radii and Flattening of the Moon From Low-Degree Spherical Harmonic Models

Spherical Harmonic Mean Radius, Equatorial Radius, Polar Radius, Polar Flattening,
Model (degree x ordinate) km km km km

2x2 1737.129 1737.927 1735.534 2.393
3x3 1737.106 1737.912 1735.494 2.419
4x4 1737.104 1738.171 1736.132 2.040
5x5 1737.100 1738.160 1736.124 2.036
6x6 1737.102 1738.143 1736.187 1.956
8x8 1737.106 1738.216 1736.565 1.651

10xl0 1737.096 1738.274 1736.006 2.267
12x12 1737.088 1738.238 1735.445 2.792
16x16 1737.095 1738.208 1736.261 1.947
Mean 1737.103 1738.139 1735.972 2.167

Standard error 0.010 0.044 0.131 0.!12

Values are not independent estimates. The standard error only indicates the stability of the solutions.

estimate comes from the even zonal terms of the spherical

harmonic solution (Table 7), which yields an apparent

flattening of 2.17 + 0.12 kin. This apparent topographic

flattening is not to be confused with the hydrostatic flattening

of approximately 6 m or the dynamical flattening of about 500

m, which are derived from the rotation and the gravitational

potential.

It is essential to note that a major contribution to the

Moon's deviation from sphericity comes from the farside

equatorial highlands (cf. Plate 1), which are likely a

consequence of large-scale melting and/or impact-related

redistribution of crustal material [Zuber et al., 1994].

Consequently, there is a significant "geological" contribution

to the topographic flatten{ng. We thus refer to the observed

flattening as "apparent" because the fundamental shape cannot

a priori be ascribed to a "frozen-in" rotational or tidal bulge

[Zuber et al., 1996]. In a separate analysis, we have

endeavored to ideniify the magnitude of the geological

contribution to the flattening and are in the process of

interpreting the_residual in the context of the rotational, tidal

and thermal history Of the Moon (M.T. Zuber and D.E. Smith,

manuscript in preparation, 1996).

Major Impact Basins

Large impact basins have imparted significant stochastic

variations on the lunar shape. The magnitude of basin

topography is much greater than both the apparent

topographic flattening and the equatorial ellipticity, and this

imposes a significant challenge in interpreting the

fundamental lunar figure. A further complication arises from

the fact that the large basins contribute to the flattening and

ellipticity, albeit in a random manner. The most pronounced

topographic feature on the Moon is the S.P.-Aitken basin,

which is characterized by a diameter of 2250 km, a rim-to-floor

depth of 8.2 km below the reference ellipsoid, and a 12-km

total vertical dynamic range. This structure, which is the

largest and deepest known impact basin in the solar system

[Spudis et al., 1994; Zuber et aI., 1994], was first detected by

the Soviet Zond 3 spacecraft measurements [Rodionov et al.,

1971] but could not be confirmed (B.G. Bills, personal

communication, 1995). The basin was later characterized on

the basis of geological mapping of lunar images [Stuart-

Alexander, 1978; Wilhelms, 1987]. Figure 14 shows a plot of

the ellipsoidal heights (elevation minus best fit ellipsoid)

versus latitude. The clear depression in the southern

hemisphere that extends from 20°S to 75°S is S.P-Aitken and

illustrates the major influence of this basin on any discussion

or computation of the lunar shape. While lunar basins such as

Mafia Imbrium and Serenetatis also represent spatially

extensive depressions and other basins such as

Humboldtianum, Crisium, and Fecunditatis constitute

significant topographic lows, no other basin is nearly as

distinctive on the global scale as S.P.-Aitken.

Table 8. Low-Degree Spherical Harmonic Coefficients (Normalized)

Spherical Harmonic C(2,0), C(2,1), S(2,1),

Model (degree x ordinate) m m m

c(212)_..... s(2,2_,
m m

2x2 -713.53 -812.52 -11.04 68.006 379.27

3x3 -721.13 -822.22 -11.47 67.585 386.05
4x4 -732.00 -773.76 -0.25 81.346 388.12
5x5 -728.77 -775.32 4.26 82.359 385.61
6x6 -731.04 -780.72 0.97 86.642 389.28
8x8 -715.51 -786.93 5.76 81.808 393.10

10xl0 5 -736.75 -784.46 0.85 81.356 396.45
i2x12 -755.45 -779.71 2.70 74.620 393A9
16x16 -733.90 -777.24 1.50 72.934 395.92

.......... Mean -729.79 -780.72 -1.69 77.41 389.70

Standard error 4.21 5.76 2.01 2.28 1.87

Values are not independent estimates. The standard error only indicates the stability of the solutions.
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Figure 11. Center-of-mass/center-of-figure offsets in (x,y,z)

directions for low-degree and -order spherical harmonic models

of lunar topography.

Note that Figure 14 does not show obvious evidence for a

previously proposed massive (3200 km diameter) nearside

Oceanus Procellarum basin [Wilhelms, 1987]. While support

for the existence of this basin has been offered on the basis of

Clementine altimetry [McEwen and Shoemaker, 1995],

90
Radius, km Sphere
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_ I _ 1738 km

1740 _- f_ ,_'_._ j,-f"

1730 _- /__ _'_ T .... _i _ 30
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Figure 12. Variation of lunar radii with longitude. The plot

shows that the offset between the Moon's center-of-figure and

center-of-mass deviates from the Earth-Moon line (0°-180 °
longitude) and is displaced approximately 25 °, such that it is

aligned in the direction of the region of highest lunar

topography on the farside.

lacking or ambiguous evidence has been cited in other

analyses based on altimetry and crustal thickness [Spudis,

1995; Zuber et aL, 1995; Neumann et aL, 1996]. The lack of a

prominent tographic expression in association with the

hypothesized structure has been realized since the Apollo era

[Kaula et aL, 1972, 1973, 1974; Phillips et aL, 1973b; Brown

et al., ]974]. Indeed, if this basin existed, it must have either

undergone virtually complete topographic relaxation and/ or

formed prior to at least some nearside highlands which

subsequently masked the signature.

._" %2 .
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Figure 13. All lunar radii measured by Clementine within 1° of the equator. The values are subtracted from a

mean of 1738.0 km. The dotted line shows the (1,1) term of the spherical harmonic expansion of topography
and the dashed line shows the (2,2) term. The solid line shows the sum of these terms.
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Table9. LunarShapeandTopographicParametersFrom
Analysisof ClementineAltimetry

Parameter Value,km Sigma,m

Meanradius* 1737.103 + 15
Mean equatorial radius* 1738.139 :t:65
Mean polar radius* 1735.972 :t:200

North polar radiust 1736.010 :t:300
South polar radius? 1735.840 :k300

Best fit ellipsoid (rotated)
A axis 1739.020 + 15
B axis 1737.567 :1:15
C axis 1734.840 + 65

Best fit ellipsoid (non-rotated)
A axis 1738.056 + 17
B axis 1737.843 + 17
C axis 1735.485 :l: 72

* From spherical harmonic solutions (Table 7).
? From spheroidal heights.

One of the puzzling characteristics of the Moon is that

nearside basins are filled with mare lavas and farside basins

tend to lack volcanic fill [WiIhelms, 1987]. The most obvious

possibility is that mare basalt on the Moon may have risen to

a hydrostatic level [Runcorn, 1974]. Inherent in this scenario

is the assumption of a common magma source depth for all

basins, filled and unfilled. If one invokes the usual

interpretation that the Moon's COM/COF offset corresponds

to a crustal thickness difference, then the nearside crust is

thinner than the farside crust. On the nearside the hydrostatic

level is located above basin floors, and it would be expected

that the elevations of maria would form a gravitational

equipotential surface. In contrast, owing to the thicker, low-

density crust, the equipotential level on the farside would be

deeper in the crust, presumably below basin floors, and magma

would not be expected to rise to an elevation that resulted in

basin flooding. Preliminary analysis of basin elevations

determined from Apollo altimetry [Sjogren and Wollenhaupt,

1976] and radar sounding [Brown et al., 1974] suggested that

nearside maria surfaces constituted an equipotential, but the

analysis was limited to equatorial basins beneath the Apollo

ground tracks. The improved spatial coverage provided by

Clementine allows a test of this hypothesis using a globally

distributed data set.

Figure 15 plots the elevations of the floors of unflooded

basins and mare surfaces of flooded basins as a function of

longitude, along with the corresponding geoid elevation (F.G.

Lemoine et al., submitted paper) at the center of each basin.

Note that maria are parallel to the geoid to within 3 km,

equivalent to 500 m on Earth when adjusting for the difference

in g. (And all but two mare basins lie within 1 kin, equivalent

to 160 m on Earth). The fact that the maria surfaces closely

parallel the geoid indicates that these surface do indeed define a

gravitational equipotential. Also note that with the exception

of S.P.-Aitken, unflooded basins tend to be at or above the

elevation of the mare surfaces. If a hydrostatic argument is

valid, these basins would not be expected to contain mare fill;

if they did, it would have been necessary for magma to have

risen above the equipotential surface. However, the floor of
S.P.-Aitken, which lies from 2 to 6 km below the mare

equipotential (and in addition, is underlain by one of the

thinnest regions of crust on the Moon [Neumann et al.,

1996]), would be expected to contain mare fill, but does not.

The Clementine data thus support a hydrostatic mechanism to

explain the absence of significant mare fill in farside basins,

except for S.P.-Aitken. For this basin it is necessary tO

invoke alternative arguments such as poor mare production

efficiency due to internal compositional or thermal

heterogeneity in this part of the early Moon [Lucey et al.,

1994].

In Figure 16 we show the relationship between eIevation

and basin age. Elevations are plotted for the floors of

unflooded basins, and the mare surfaces and floor elevations of

mare basins, the latter determined by correcting for the

thickness of mare fill. We determined fill thicknesses on the

basis of a recent analysis of depth-diameter relationships for

flooded and unflooded impact basins using Clementine

altimetry [Williams and Zuber, 1996]. The figure shows that

radial elevations of mare basins tend to correlate, at a

statistically significant level, with basin age. This

relationship could perhaps be explained if younger basins

overlapped on sites of older basins; because such areas had

been previously excavated they would have had a lower

elevation prior to later impacts. Nonmare basins do not

exhibit similar correlation, but their ages are not as well

determined as those of the mare basins. In any case, the

explanation for this observation will require more detailed

modeling and analysis than presented here. We also note that

neither mare nor unflooded basin elevations correlate with

basin diameter.

Figure
best fit

,,,, RMS = 1.9 km
J I a , 1 l t I i i = t i I , , , , I t ] l [ i I [ [ [ t_

-60 -3() 0 30 60 90
Latitude

14. Radially averaged ellipsoidal heights, corresponding to the difference between elevations and the

ellipsoid. Note the prominence of the S.P.-Aitken Basin in the southern hemisphere.
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360

Macroscale Surface Roughness

Pre-Clementine analyses of the surface roughness of the

Moon [Moore et aI., 1976] were driven by assessment of

possible manned landing sites, and consequently, focused on

much smaller length scales than are resolvable with the

Clementine aItimetry, which are best suited to analyze

wavelengths of tens to hundreds of kilometers. The Kalman

filter that we developed to remove noise from the lidar profiles

provided a framework for us to evaluate the Moon's roughness,

or local-scale topography, at these wavelengths. We

estimated the macroscale surface roughness along the

Clementine ground tracks by gridding the lidar-defived

topography data into 1/20th degree bins (approximately one

shot spacing) along each track, and fitting the local along-

track and across-track slopes to the covariance model used in

the filtering scheme [Neumann and Forsyth, 1995]. An

inherent assumption in this approach is that roughness is

1745000
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Figure 16. Correlation of basin elevation with age. Results are shown for basins with (solid squares) and
without (solid circles) mare fill. Results show a correlation of elevation with age for mare basins. This result

persists after correction in which the mare fill is removed (open squares) using the method of Williams and

Zuber [1996]. Basins without mare fill do not show any correlation with elevation.

4.15
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b)

Figure 17. Three-d{mensional relief maps of (a) the nearside western hemisphere and (b) the farside S.P.-

Aitken basin. The figure illustrates the flatness of lunar maria as compared to the highlands. In Figure 17a the

Orientale Cordillera appears at the bottom left with depressions associated with Gfimaldi and Cruger along its

margin, while Humorum Basin can be seen at the bottom center. The Montes Ural (upper center), Aristarchus
Plateau (center), and Montes Carpatus (lower fight) rise above the mafia. Craters Lichtenberg, Seleucus,

Marius, Aristarchus, and Copernicus, from left to right, are resolved as 1- to 2-km-deep depressions.

Ptolemaus appears at the lower right. In Figure 17b the S.P.-Aitken basin covers the central bottom of the

figure. For both maps the vertical exaggeration is 60:1.

locally isotropic. The roughness consists of an estimate of

the characteristic height, or overall variance, of the sample as

a whole, together with an estimate of the distance over which

local deviations are expected to attain 80% of this value.

We produced a macroscale roughness map of the Moon in

30°x25 ° squares (Figure 6), which shows the marked regional

variability of the best fitting height parameter for

topography. A robust measure of incremental variance (h) or

median roughness, varies from less than 0.5 km over the

northern nearside mafia to more than 2 km over the highland

regions. The roughness strongly affects the comparability of

lidar measurements from different spacecraft ground tracks, and
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significant at the 99% level.

accounts for much of the difference between Apollo-era

measurements and the Clementine altimetry (Figure 9),

As previously noted from the Apollo altimetry [KauIa et al.,

1972], Clementine topography shows the lava-flooded mare

basins to be extremely level, with typical slopes less than 1

part in 103 . Figure 17a is a 3-D relief map of the nearside

western hemisphere, which illustrates the flatness of the

northern maria. Over a region of nearly 2400 km 2, the median

absolute deviation of the maria from a smooth (quadratic)

surface is only 200 m. Par.ticularly smooth are the northwest

Oceanus Procellarum and the lmbrium Basin. Figure t7b

illustrates the considerably greater relief of farside highlands

in the vicinity of the S.P.-Aitken basin. For comparison, the

deviation of this region from a quadratic surface is 2400 m.

As an indicator of the scale of surface processes, the

roughness of the Moon appears to reflect more than simply the

presence or absence of maria. For example, the S.P.-Aitken

basin (180°E, 50°S), an albeit anomalous feature, is

topographically smoother than the surrounding highland

regions. Factors that correlate with roughness are elevation

and age. Figure 18 indicates that the positive correlation

between elevation and roughness displays a quasi-linear

relationsip and is statistically significant at the 99% level,

Elevated areas on Earth and Venus also tend to exhibit steeper

slopes and greater roughness at generally comparable length

scales [Sharpton and Head, 1986; Ford o_nd Pettengill, 1992;

Harding et at., 1994; Garvin and Frawley, 1995], though the

processes that produced the roughness are distinctive on the

various planets.

Summary

Topographic measurements from the Clementine lidar have

been used to produce an accurate model for the shape of the

Moon. We have analyzed in detail the data and model, with

emphasis on spatial resolution, spectral content, and error

sources, and have obtained refined estimates of the

fundamental parameters of the lunar shape. The largest global-

scale features are the center-of-mass/center-of-figure offset and

the apparent polar flattening, both of the order of 2 kin. In

comparison, the equatorial ellipticity, at 800 m, is small.

Redistribution of crustal material from major impacts has

significantly modified the lunar shape, with the magnitude of

major impact basin topography exceeding the magnitudes of

Moon's long wavelength deviations from sphericity. Mare

basin elevations parallel the geoid and thus define a

gravitational equipotential surface, while the floors of

unflooded large basins, except for S.P.-Aitken, lie above the

equipotential. Mare and unflooded basin elevations are

consistent with a hydrostatic mechanism for the absence of

significant farside maria except for S.P.-Aitken. The observed

absence of significant mare deposits in this structure implies

major compositional and/or thermal heterogeneity in the lunar

interior

A comparison of elevations derived from the Clementine

lidar to control point elevations from the Apollo laser

altimeters indicates that measured relative topographic heights

generally agree to within -200 m on the maria. Deviations

from a quadratic surface increase to over 2 km on the farside

highlands. The observed scatter of the observations is due to

noncoincidence of measurements and the roughnes_ of

macroscale (10L102 kin) topography. Lunar surface roughness

at these length scales correlates with surface elevation and age.

The improved knowledge of topography provided by

Clementine has implications for lunar structure and evolution.

Models of internal structure that require both high-quality

topography and gravity measurements will continue to be

hampered, at least in the near term, by the lack of farside

gravity observations, which require direct Doppler tracking of

an orbiting spacecraft. However, both the topography and

gravity (F.G. Lemoine et al., submitted paper) data sets are

sufficiently improved from pre-Clementine versions to enable

many global: and regional-scale problems to be addressed. Of

particular value would be the isolation of effects of major

impa.cts, heterogeneous crustal production, and orbital and

tidal influence on the long-wavelength shape, in order to

understand the contributions of these fundamental processes in

the formative development of the Moon.
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